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ABSTRACT

In recent years, mobile apps have become the infrastructure of many

popular Internet services. It is now fairly common that a mobile app

serves a large number of users across the globe. Different from web-

based services whose important program logic is mostly placed on

remote servers, many mobile apps require complicated client-side

code to perform tasks that are critical to the businesses. The code of

mobile apps can be easily accessed by any party after the software

is installed on a rooted or jailbroken device. By examining the code,

skilled reverse engineers can learn various knowledge about the

design and implementation of an app. Real-world cases have shown

that the disclosed critical information allows malicious parties to

abuse or exploit the app-provided services for unrightful profits,

leading to significant financial losses for app vendors.

One of the most viable mitigations against malicious reverse

engineering is to obfuscate the software before release. Despite

that security by obscurity is typically considered to be an unsound

protection methodology, software obfuscation can indeed increase

the cost of reverse engineering, thus delivering practical merits for

protecting mobile apps.

In this paper, we share our experience of applying obfuscation to

multiple commercial iOS apps, each of which has millions of users.

We discuss the necessity of adopting obfuscation for protecting

modern mobile business, the challenges of software obfuscation

on the iOS platform, and our efforts in overcoming these obstacles.

Our report can benefit many stakeholders in the iOS ecosystem,

including developers, security service providers, and Apple as the

administrator of the ecosystem.

CCS CONCEPTS

· Security and privacy → Software security engineering; ·

Software and its engineering → Software reverse engineer-

ing;
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1 INTRODUCTION

During the last decade, mobile devices and apps have become the

foundations of many million-dollar businesses operated globally.

However, the prosperity has drawn many malevolent attempts to

make unjust profits by exploiting the security and privacy loopholes

in popular mobile software.

In recent years, we noticed that security breaches targeting mo-

bile apps are becoming more and more prevalent, with both of

their scale and severity trending up at a worrying rate. Among all

emerging threats, malicious and fraudulent campaigns, conducted

through programmatically manipulating a massive number of mo-

bile devices and faking a large volume of user activities [18], are

particularly harmful to many large-scale mobile businesses. To min-

imize the impacts of those campaigns, app developers typically

need to place certain hooks into the client code to detect suspicious

user activities (see Section 3 for details). Attackers, on the other

hand, try to sabotage or circumvent these defenses in order to com-

mence their malicious activities without being noticed. Since most

malicious activities targeting mobile apps rely on reverse engineer-

ing to tamper with the code, thwarting or weakening the reverse

engineering capabilities of the attackers is considered to be a fairly

cost-effective protection strategy.

By impeding reverse engineering, developers hold a chance to

prevent or delay incoming attacks, buying time for long-term secu-

rity enhancement andmore permanent solutions to various security

issues. To this end, software obfuscation plays an important role.

The goal of obfuscation is to transform program code into a form

that makes reverse engineering ineffective or uneconomical.

To date, there exist various supposedly effective obfuscation tech-

niques that may fulfill the demand of the mobile software industry.

However, the techniques themselves do not automatically lead to ef-

fective and practical software protection, especially for mobile apps.

Oftentimes, the hardware and software environments of mobile

platforms impose harsh restrictions on the types and configurations

of obfuscations that can are applied to mobile apps. Additionally,

obfuscation must not affect the regular development, distribution,

and maintenance of mobile apps, which usually requires further

customization to be made for the adopted obfuscation techniques.
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In this paper, we report our experience of obfuscating multiple

commercial iOS apps with millions of active users. Being one of the

dominant mobile operating systems, iOS possesses the common

characteristics of a mobile platform but also distinguishes itself

from other systems for many unique features. It is known that

software obfuscation has been quite prevalent in Android app de-

velopment, but much less is known or studied for iOS. Many mobile

developers now release their apps for both platforms. If the iOS

version of an app is not effectively protected, attackers will have

a good chance to exploit the app no matter how well the Android

version is obfuscated.

To help mobile developers form a deeper understanding of soft-

ware obfuscation and avoid common pitfalls that may appear when

obfuscating iOS apps, we discuss our learned lessons on the follow-

ing topics:

• Why iOS apps are in urgent need of the protection of soft-

ware obfuscation, from an industrial point of view,

• What restrictions are imposed by the iOS platform on obfus-

cation techniques,

• How the centralized app distribution process can impact

practice of obfuscation, and

• How to balance obfuscation and app maintenance.

It should be emphasized that the major focus of this paper is not

to propose new obfuscation techniques or evaluate their potency;

instead, the point is to introduce how to operationalize obfuscation

in real-world mobile app development.

The rest of the paper is organized as follows. We first introduce

the background knowledge about software obfuscation in Section 2.

We then explain why we are motivated to protect production iOS

apps with obfuscation in Section 3. Our experiences and lessons are

presented in Section 4, followed by the evaluation of our obfuscation

techniques in Section 5. Section 6 discusses our prospect of iOS

obfuscation and other protection methods, Section 7 reviews related

work on obfuscation, and Section 8 concludes the paper.

2 SOFTWARE OBFUSCATION

2.1 Theoretical Foundation

According to the formalization by Barak et al. [15], an effective

obfuscation technique is a program transformation algorithm O,

where given any program P , O(P) computes the same function

f ∈ F as P does; meanwhile, for any non-trivial function property

ϕ : F → S and any program analyzer Aϕ that tries to efficiently

compute ϕ, if ϕ(f ) is intractably hard given only black box access

to P as an oracle, the result ofAϕ (O(P)) is no better than randomly

guessing ϕ(f ).

To better understand the definition above, take symmetric en-

cryption as an example. Suppose there is a cipher E that takes a key

k and consumes plaintext p to compute the ciphertext E(k,p). If k

is hard-coded into E, E(k, ·) can be considered as a function taking

plaintext as the sole argument, denoted by Ek . Let ϕ be the prop-

erty function that decides the hard-coded key of a cipher, namely

ϕ(Ek ) = k . Assuming E is resilient to chosen-plaintext attacks,

computing ϕ will be prohibitively expensive if attackers can only

access E as a black box oracle. However, it is possible to recover

k in a reasonable amount of time by directly looking at P which

is the code of an implementation of Ek . In that case, if a perfect

obfuscator O exists and the implementation of Ek is released as

O(P), any attempt to efficiently learn k by analyzing O(P) will fail.

It has been proven that a perfect obfuscator does not exist, even

if the properties to hide are limited to {0, 1}-valued functions [15].

That is, analyzing the code of a program can always reveal at least

1 bit information about what the program computes without spend-

ing too much time, no matter how complicated the program code

is rendered. Therefore, some theorists relaxed the security require-

ment for obfuscation instead of trying to develop a technique that

is universally effective [27].

2.2 Obfuscation in Practice

Since a theoretically perfect solution to the generalize problem of

software obfuscation is unfeasible, practitioners usually set limits

to problem characteristics so that the problems can be addressed

within a reasonable scope. In industry, the goal of obfuscation is not

to make reverse engineering impossible but to increase the cost of

it such that attacks can be delayed or diverted to relatively poorly

protected targets.

A recent literature review classified obfuscation algorithms into

three categories according to how they are implemented [40]. The

first kind is data obfuscation that alters the structures in which

data are stored in binaries. One typical data obfuscation technique

is to statically encrypt the string literals and decode them at run

time. The second kind is static code rewriting that transforms the

executable code into a semantically equivalent but syntactically ob-

scuring form. For example, a static code rewriting technique called

movfuscator [26] can transform an x86 binary into a form that only

contains mov instructions, making it difficult for reverse engineer-

ing tools to reconstruct the original control flow. The third kind is

dynamic code rewriting, also known as self-modifying obfuscation.

For programs protected by self-modifying obfuscation, the statically

observable code is different from what is actually executed at run

time. One of the most widely used dynamic rewriting obfuscation

techniques is the packing method. A packer encodes the original

code of the obfuscated program into data and dynamically decodes

the data back into code during execution.

3 MOTIVATION

Before sharing our experience with iOS obfuscation, we would like

to discuss the reasons that drove us to consider employing obfusca-

tion in the first place. The rationale is twofold. We first explain the

important role played by reverse engineering in malicious activities

targeting mobile software. We then introduce why these threats are

particularly realistic on iOS due to the lack of technical challenges

in analyzing unprotected iOS apps.

3.1 Threats of Reverse Engineering

Manymalevolent attempts to exploit mobile apps for illegal benefits

heavily depend on reverse engineering. App-specific vulnerabilities

can certainly be devastating if their presences are learned by at-

tackers. For example, a previous version of Uber’s mobile app was

found vulnerable and therefore can be exploited to get unlimited

free rides [1]. On the other hand, besides those specialized threats,

there also exist attacks that are generally applicable to many apps.

We describe four common kinds of them.
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Intellectual property theft. This is a longstanding problem bother-

ing commercial software developers. The piracy of desktop software

causes millions of dollars of yearly economic loss [13]. On mobile

platforms, the problem may be even more severe, since the digital

right management of mobile apps is usually delegated to central-

ized app publishers and significantly relies on the security of the

underlying mobile operating systems. If these systems are cracked

(known as łrootž for Android and łjailbreakž for iOS), attackers can

easily pirate a large number of mobile apps in a short period.

Man-in-the-middle attacks. By tricking users into connecting

mobile devices to untrusted wireless networks or installing SSL

certificates from unknown sources, attackers can intercept and

counterfeit the communication between apps and servers [31]. Af-

ter analyzing how apps process the data exchanged with servers,

attackers can potentially control app behavior by forging certain

server responses.

Repackaging. It has been reported that some cybercrime groups

are able to reverse engineer popular social networking apps and

weaponize them for stealing sensitive user information [20]. By

developing information-stealing modules and repackaging them

into genuine apps, attackers managed to create malicious mobile

software with seemingly benign appearances and functionality.

Contacts, chat logs, web browsing histories, and voice recordings

are common targets of theft.

Fraud, spam, and malicious campaigns. Nowadays, many apps

employ anomaly detection to identify suspicious client activities

and prevent incidents like fraud, spam, and malicious campaigns.

This is usually achieved through collecting necessary information

about users and their devices and fitting the collected data into

anomaly detection models. Since the data are harvested on device,

attackers can reverse engineer the mobile apps and find out what

kinds of data are being collected. In this way, they may be able to

mimic normal user behavior by fabricating false data of the same

kinds on rooted and jailbroken devices.

During the past few years, we have encountered many incidents

described above, among which the most concerning threat is the

prevalence of large-scale malicious campaigns, as mentioned in

Section 1. According to a report on the status of malicious cam-

paigns in China [2], the business of łclick farmingž has formed a

billion-dollar underground economy, in which hundreds of well

organized collusive groups have participated. The technological

means of these campaigns are also evolving quickly. Campaign

runners can now programmatically control hundreds of mobile

devices without the need of human labor, while each device can

host over 50 instances of the same mobile app. Figure1 shows an

example of such technology.

Since the third quarter of 2016, we have captured a large-volume

of suspicious activities being conducted around the resources and

services offered to mobile app users. Through information cross-

validation, we detected that there are millions of suspicious iOS

devices, many of which are virtually faked, constantly trying to log

into the account system of the apps, committing massive promotion

operations like clicking links to a certain product, posting comments

to a certain page, and exhaustively collecting bonuses provided to

Figure 1: Programmatically controlling massive iOS devices

as a service (http://shemeitong.com/index.php/anli/show/46.

html).

daily active users. Many of these activities have violated end user

terms and affected the quality of the services.

To detect the malicious campaigns and nullify their impacts, app

developers need to precisely identify those bot-like users through

extensive data analysis. Since data collection must strictly respect

user privacy, only certain types of data can be collected for this

purpose, which attackers can easily guess out. For the sake of data

genuineness, we have to ensure that malicious groups cannot tam-

per with the on-device data collection process through reverse

engineering the corresponding program logic, which requires ef-

fective software protection techniques to be deployed.

3.2 Reverse Engineering on iOS

From the research point of view, there exist various challenges in au-

tomated reverse engineering that cannot be easily addressed, which

may lead to beliefs that reverse engineering is not a realistic threat

to common mobile software vendors. In reality, however, many

of such challenges can be practically addressed or circumvented,

especially on iOS.

Since most iOS apps are built with the standard toolchain pro-

vided by Apple, the shapes of their binary code are utterly uniform.

This is a highly desired situation for reverse engineering. By analyz-

ing the common code patterns and developing corresponding analy-

sis heuristics, modern binary analysis tools have grown reasonably

proficient at decompiling iOS apps, making reverse engineering

much less laborious than before. Figure 2 is an example that demon-

strates the quality of the decompilation result for a popular open

source iOS app. The decompilation is done by IDA Pro [8], the most

widely used reverse engineering toolkit in industry. As can be seen,

the generated pseudocode is almost identical to the original source

code, except for the language implementation details which are

implicit in the source code but recovered by the decompiler, e.g., the

self pointer. To experienced reverse engineers, these differences

are negligible.

In addition to the support of increasingly mature analysis tools,

reverse engineering is made even more effective on iOS due to its
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1 @implementation TSAnimatedAdapter

2 ...

3

4 − (BOOL)canPerformEditingAction:(SEL)action {

5 return (action == @selector(copy:)

6 || action == NSSelectorFromString(@"save:"));

7 }

8

9 ...

10 @end

(a) Original Objective-C source code

1 // TSAnimatedAdapter − (bool)canPerformEditingAction:(SEL)

2 bool __cdecl −[TSAnimatedAdapter canPerformEditingAction:]

3 (struct TSAnimatedAdapter ∗self, SEL a2, SEL a3) {

4 bool result;

5 if ( "copy:" == a3 )

6 result = 1;

7 else

8 result = NSSelectorFromString(CFSTR("save:")) == (_QWORD)a3;

9 return result;

10 }

(b) Pseudocode obtained from decompiling the binary

Figure 2: Decompiling an open source iOS app [7] with IDA Pro

development and production environment. The majority of iOS

apps are written in Objective-C, a C-like, object-oriented, and fully

reflexive programming language developed by Apple. In Objective-

C, method names are called selectors and method invocations are

implemented in a message forwarding scheme. When a method is

called on an object, the language runtime will dynamically walk

through the dispatch table of the class of the object to find a method

implementation whose name matches with the selector. If no match

is found, the runtime will repeat the procedure on the object’s

base class. Naturally, the message forwarding scheme requires the

Objective-C compiler to preserve all method names in program

binaries. Method names are extremely useful information when

analyzing large software binaries, for it allows human analysts to

infer program semantics and quickly identify critical points worth

in-depth inspection among a huge amount of code.

On the Android platform, there is a similar problem since Java is

also a fully reflexive language. Having realized the potential risks,

Google integrated a method and class name scrambler into the

Android development toolchain [11]. In contrast, iOS developers do

not get any support from Apple, leaving all code completely unpro-

tected by default. Furthermore, Apple now advises iOS developers

to submit apps in the form of LLVM intermediate representation,

which is even less challenging to analyze than ARM machine code.

Overall, reverse engineering iOS apps can be made very effective if

developers do not take actions of prevention.

4 EXPERIENCEWITH iOS OBFUSCATION

Regarding obfuscation, our major objective is to protect a com-

mon code base shared by a group of commercial iOS apps. These

apps span a wide range of functionality categories, including news,

utility, navigation, payment, social networking, and shopping.

4.1 Tools

iOS apps can be developed in several different programming lan-

guages, including C, C++, Objective-C, and Swift. Apple provides

different frontends for each language, while all backends are based

on the LLVM compiler infrastructure.1 Therefore, all source code in

an iOS project is eventually translated into the LLVM intermediate

representation (IR). Most of the compiler assets for iOS development

have been made open source. This allows other software vendors

to develop new features for the compilers.

1The swift compiler backend is based on a separately maintained LLVM version, thus
slightly different from the standard one.

Considering the iOS app build process, we decided to imple-

ment our obfuscation tool as a series of LLVM IR transformation

passes. Compared with other options like source-level and binary-

level obfuscation, the IR-level solution provides multiple appealing

benefits:

• IR obfuscation is language independent. A single IR transfor-

mation module can process most part of an iOS app, which

is not the case for source-level obfuscation.

• Apple now advises app developers to submit their products in

the form of LLVM IR rather than binary. IR-level obfuscation

fits this practice better than binary-level obfuscation.

• A compiler-based obfuscator is mostly transparent to app

developers, minimizing the interference to the normal devel-

opment process.

The current implementation of our obfuscator consists of about

3.8K lines of C++ code,2 plus another 1K lines of third-party code

for random number generation and security hashes. The obfuscator

provides different obfuscation algorithms that can be arbitrarily

combined per developer demands. The granularity of obfuscation

is configurable through customized compiler flags and extended

function attributes. Figure 3 shows how app developers can control

the granularity of obfuscation at the compilation unit level and

function level. In actual development, each obfuscation algorithm

can be configured separately.

4.2 Obfuscation Algorithms

Choosing the appropriate obfuscation algorithms is the first step

to effective protection of iOS apps. In addition to effectiveness,

obfuscation in real-world software engineering also needs to take

many other factors into account. On iOS, there are several issues

that may not exist on other platforms. We discuss these factors with

more details below.

Platform-wide security policies. iOS is considered to be one of the

most secure mobile systems, for it enforces extremely restrictive

security policies on its apps. The policy affecting obfuscation the

most is called code signing. To counter software tampering, iOS

ensures that every executable page owned by a third-party app

must be signed and checked for integrity before code in that page

is executed for the first time after the process starts. On the other

hand, changing the execution permission of a memory page is not

allowed for third-party apps. This means self-modifying code is

2Code statistics in this paper include comments and blanks.
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1 // source.c, compiled with −obf flag

2

3 void foo() {

4 ...

5 }

6

7 void bar() {

8 ...

9 }

(a) Obfuscate the whole compilation unit

1 // source.c, compiled with −obf flag

2

3 __attribute__((no_obf)) void foo() {

4 ...

5 }

6

7 void bar() {

8 ...

9 }

(b) Obfuscate the whole compilation unit excluding foo

1 // source.c, compiled without −obf flag

2

3 __attribute__((obf)) void foo() {

4 ...

5 }

6

7 void bar() {

8 ...

9 }

(c) Obfuscate only foo in the compilation unit

Figure 3: Obfuscation configuration examples

strictly prohibited on iOS, leaving dynamic code rewriting obfus-

cation unfeasible. For this reason, many packer-based obfuscation

techniques that are popular on Android [47] are not viable options

for iOS.

Binary size. For apps that need to support all living iOS versions

(including 7 and above), Apple imposes a 60 MB limit on the size of

the code section in each executable [10]. Since many popular apps

have large code bases, this limit is very tight. Even if the code to be

obfuscated is only a small part of the apps, developers cannot afford

obfuscation algorithms that bloat the software size too much. That

includes virtualization-based obfuscation [24, 41], which requires

integrating a full-fledged hardware emulator into the app.

LLVM IR compatibility. Since our obfuscator operates on LLVM

IR, it can be challenging, if possible at all, to implement certain

obfuscation algorithms that require extensive manipulations of

low-level machine instructions.

App review. All iOS apps are reviewed by Apple App Store before

allowed to be published. This is a necessary procedure for mini-

mizing the number of low-quality and malicious apps delivered to

users. While the details of app reviews are kept confidential, it is

likely that both humans and automated analyzers are participating

in the process. It is imperative that our obfuscation does not have

adverse impact on the review. In particular, we must make sure

that the applied obfuscation algorithms strictly abide by the iOS

developer regulations [9].3

Considering the factors listed above, we made a careful selection

of obfuscation algorithms, listed as follows.

(1) Symbol name mangling that turns understandable human-

written identifiers into strings that do not indicate program

semantics.4

(2) String literal encryption that hides the plaintext of the string

literals stored in the binary. The protected strings are de-

crypted at run time.

3 It is known that some iOS developers have tried to misuse obfuscation to disrupt and
mislead the review process such that the apps can secretly possess features disallowed
by Apple. We emphasize that techniques discussed in this paper are not meant to
advocate such behavior, nor any app obfuscated by us ever seeks to bypass Apple’s
review through obfuscation.
4 Although symbol name mangling was valid obfuscation on iOS by the time of paper
writing, our latest communication with Apple suggests that it may not be acceptable
any more. Readers interested in adopting this method should carefully consult with
Apple about their possibly undocumented regulations.

(3) Disassembly disruption that confuses instruction decoding

and function recognition in binary analysis. Typical methods

of disruption include interleaving data with code and forging

code patterns that code analyzers recognize as special hints

for disassembly.

(4) Bogus control flow insertion that constructs unfeasible code

paths guarded by opaque predicates [23].

(5) Control flow flattening that obscures the logic relations be-

tween program basic blocks [21].

(6) Garbage instruction insertion that injects garbage code that

is irrelevant to program functionality [22].

Among these obfuscations, symbol name mangling and string

literal encryption are mainly for misleading human perception

while the others are meant to confuse both humans and automated

tools. Themajor focus of our solution is to impede automated binary

disassembly and decompilation, which are the early steps of most

malicious activities conducted by the practitioners of underground

economy targeting iOS apps.

We ensure that all selected obfuscation algorithms well abide

by Apple’s security policies. By analyzing other obfuscated iOS

apps found in the App Store, we have confirmed that these algo-

rithms or their variants have been previously employed by legit app

developers, indicating that they are unlikely to affect the review

process. Regarding the limit for binary size, obfuscation (1), (2), and

(3) barely introduces spatial overhead into the obfuscated binaries.

For the other three algorithms, the expanded binary size can be

controlled within an acceptable rate by carefully tuning the con-

figurable obfuscation parameters, e.g., the ratio of inserted opaque

predicates and garbage instructions to the amount of the original

code.

Through our implementation, we have confirmed that all se-

lected algorithms are fully compatible with LLVM IR, except for

(3), which needs to directly manipulate machine code. We partially

addressed this problem with the use of inline assembly, a feature

supported by many implementations of C-family languages and

LLVM itself. Figure 4 shows an example of interleaving data and

code at the LLVM IR level. The inserted data are used for disrupting

disassembly. The data chunks are guarded by an opaque predicate

so that they are never reached and thus do not compromise nor-

mal execution. In Section 4.3, we will discuss implementing binary

obfuscation at the IR level in more depth.

Many obfuscation methods we employed have reference imple-

mentations from the open source community [5, 6, 32]. We inten-

tionally made our implementation different from the public ones
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1 ; @foo: A function computing foo(a, b) = a + b

2 define i32 @foo(i32 %a, i32 %b) #0 {

3 entry:

4 ; %x: uninitialized 32−bit integer variable

5 %x = alloca i32, align 4

6 %0 = load i32, i32∗ %x, align 4

7 %1 = load i32, i32∗ %x, align 4

8 %add = add nsw i32 %1, 1

9 %mul = mul nsw i32 %0, %add

10 %rem = srem i32 %mul, 2

11 ; %tobool: opaque predicate 'x∗(x+1)%2 != 0' (constantly

false)

12 %tobool = icmp ne i32 %rem, 0

13 br i1 %tobool, label %if.then, label %if.else

14

15 ; %if.then: unreachable block guarded by %tobool

16 if.then:

17 ; insert 4−byte data 0xdeadbeaf with inline asm

18 call void asm sideeffect ".long␣0xdeadbeaf", ""()

19 br label %if.end

20

21 if.else:

22 %add1 = add nsw i32 %a, %b

23 br label %if.end

24

25 if.end:

26 %2 = phi i32 [%x, %if.then], [%add1, %if.else]

27 ret i32 %4

28 }

Figure 4: Example of obfuscation utilizing LLVM IR inline

assembly

by altering code patterns and introducing new features. Attackers

will need more sophisticated techniques to nullify the mutated ob-

fuscation effects [44]. Indeed, most of the mutations we made are

supplementary and it is questionable whether they render the ob-

fuscations fundamentally more difficult to defeat. Ideally, a reliable

defensive measure should be secure even if its technical details are

known to attackers. This is however a standard not met by most

obfuscation techniques used in practice. As a consequence, keeping

the obfuscation details confidential is one of the few advantages

that benign developers can hold over adversaries. Regardless, the

customized obfuscation techniques can at least make reverse engi-

neering much more tedious and frustrating, since reverse engineers

will have to undo the customization before reducing the mutated

obfuscation to its baseline form. Again, we would like to note that

the main contribution of the paper is not developing or evaluating

new obfuscation methods, but maximizing the value of existing

techniques in practical engineering.

4.3 Implementation Pitfalls

We have encountered a series of technical issues when trying to

implement the aforementioned algorithms, many of which are quite

stealthy and lead to subtle problems affecting the potency and

practicality of our work. Some of the issues are generally relevant

to software obfuscation, but more of them are unique to iOS.

4.3.1 Inline Assembly. As previously mentioned, the inline as-

sembly feature of LLVM allows IR transformations to manipulate

machine instructions. To the best of our knowledge, this is the only

solution that makes binary-level obfuscation possible if we are to

follow the currently recommended iOS app development procedure.

Since directly manipulating or adjusting machine instructions

after compiling the source code is not possible, the capability of

our solution is significantly limited. In principle, inline assembly

can only perform instruction insertion but not code modification or

deletion. Moreover, at the time of IR transformation, most machine

code is not yet generated by the LLVMbackend, making it extremely

difficult to construct complicated binary transformations solely

with LLVM IR manipulation. Another factor to consider is the

characteristics of the ARM architecture. Compared with the CISC

architectures x86 and x64 where binary-level obfuscation is quite

prevalent, ARM is RISC and employs the fixed-length instruction

encoding. This invalidates many obfuscation techniques that exploit

the variable-length encoding of instructions, such as overlapping

instructions [16].

According to our experience, the following obfuscation-oriented

transformations can be correctly implemented with LLVM inline

assembly:

• Insert junk instructions.

• Interleave data and code in unreachable basic blocks.

• Perform control flow transfers that are consistent with the

IR-level control flows.

• Diversify stack frame layouts by manipulating the stack and

frame pointer registers.

It should be noted that the correctness of these transformations

cannot be guaranteed for concurrent code, due to the lack of sup-

port for volatile inline assembly in LLVM. In certain cases, aggres-

sive compiler optimization may also make binary-level obfuscation

problematic. As such, it is extremely crucial to thoroughly test

the obfuscator in real app development and production settings.

Because of this potential instability of binary-level obfuscation in

LLVM IR, developers should take deliberation to make appropriate

trade-offs among security, reliability, and maintainability when

designing an iOS obfuscator.

4.3.2 Heterogeneous Hardware. In contrast to Android, iOS runs

on a very limited set of models of hardware, therefore hardware

fragmentation is much less of an issue for most iOS developers. For

obfuscation, however, heterogeneous architectures is still a factor

that needs to be considered, especially when obfuscation aims to

hinder binary disassembly, which is heavily architecture dependent.

iOS and its variants support both 32-bit and 64-bit ARM architec-

tures. For iPhone apps, 32-bit binaries are no longer supported since

iOS 11, while other Apple mobile devices like smart watches and

smart TVs will keep supporting 32-bit binaries for a much longer

time. If a developer intends to release its apps on all active iOS

devices and the code fragments to be protected are shared by apps

on different platforms, obfuscation should guarantee that code for

the two architectures are equally protected. If code for one archi-

tecture is less well obfuscated than that for the other, attackers will

simply choose to breach the weaker spot, leaving the more effective

protection on the other architecture meaningless. This is similar to

what we have emphasized in Section 1 about protecting iOS and

Android apps with comparable effort.

4.3.3 App Maintainability. In most cases, when commodity soft-

ware crashes, the only information available to software developers

for investigating the root causes are the core dumps and stack traces
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collected at crash sites. This applies to iOS apps as well. Developers

can either embed a third-party crash reporting library into their

apps or periodically receive diagnosis reports from Apple. In ei-

ther case, the readability of the stack traces will be affected by

obfuscation, potentially making app maintenance troublesome.

Obfuscation can render crash traces unreadable in two aspects.

Firstly, the symbol names appearing in the stack traces, especially

the function names, are scrambled into strings meaningless to hu-

mans. To undo this effect at the time of crash analysis, the obfuscator

need to memorize the mapping from original symbol names to the

mangled ones during app compilation and revert the obfuscated

names before app maintainers read crash reports. Secondly, obfus-

cation inserts additional code into the software, which cannot be

correlated to any location in the source files. Ideally, if the obfusca-

tor is correctly implemented, obfuscation-specific code should not

cause crashes. However, since iOS apps are mostly written in unsafe

programming languages that are prone to memory errors, faults

caused by defective genuine app code may propagate to surround-

ing locations, possibly reaching code introduced by the obfuscator.

To tackle this problem, we make the obfuscator generate extra de-

bug information for the inserted code. In order to minimize the

confusion caused to crash analysts, we adopt a łnearby principlež

that maps obfuscator-generated code to the source location of the

nearest genuine app code within the same lexical scope.

On iOS, the debug information of an executable is collected into

a dedicated metadata file and is only accessible to app developers.

Therefore, enriching debug information will not accidentally help

reverse engineers better understand the app.

5 EVALUATION

We now report the outcome of our obfuscation effort. The protected

iOS code base consists of 23K lines of Objective-C and C code, which

roughly takes 0.5% to 2% of each including app. We evaluated the

obfuscation in two aspects, i.e., resilience and overhead. According

to the definition by Collberg et al. [23], resilience indicates how

well the obfuscation can withstand automated reverse engineering.

As for overhead measurement, we focus on binary size expansion

and execution slowdown.

5.1 Resilience

Although software obfuscation has been actively researched for

quite some time, how to systematically assess the security strength

of an obfuscator remains an open problem. The theoretically solid

evaluation methodology is to reduce deobfuscation to a computa-

tional problem with provable or conjectural intractability. To date,

this has only been done for indistinguishability obfuscation [27],

which is still not practical for protecting real-world software [36].

On the other hand, evaluation through empirical experiments al-

ways raise concerns about the possibility that the obfuscation can

be effectively nullified by some unknown or future deobfuscation

methods not considered by the evaluation. Some recent effort has

tried to establish standards for assessing the security strength of

obfuscation techniques [14, 37, 42], but it remains unclear how well

they can fit the demands of practical software protection.

Practitioners in industry mostly evaluate the resilience of an ob-

fuscation technique through white-hat penetration tests. Although

the procedures of these tests are exceedingly subjected to human

intuition and experience [14, 17], the early steps are fairly standard.

Typically, the testers will first use automated reverse engineering

tools to reduce binary code into a form that is much more con-

venient for humans to inspect. Our internal penetration test also

follows this scheme. In the section, we report the effectiveness of

our obfuscator by showing its resilience to IDA Pro, the de facto

industrial standard of binary disassembler and decompiler.

Our obfuscation delivers two major disrupting effects on the

efficacy of IDA Pro. The first one is that IDA Pro will report signifi-

cantly more false positives when trying to recognize the starting

addresses of functions in an obfuscated binary, due to the confusing

code patterns we inserted. Table 1 displays the true numbers of

functions, the numbers of functions recognized by IDA Pro, and the

numbers of false positives, counted before and after obfuscation.

Note that the ground truths of function numbers before and after

obfuscation are slightly different because the obfuscator inserted

some helper functions during IR transformations.

The other disrupting effect is that IDA Pro will fail to disassemble

a large portion of the binary code, due to the garbage instructions,

intrusive binary data, and unfeasible control flows forged by the

obfuscator. Figure 5 presents the performance of IDA Pro regarding

the original and obfuscated binaries in terms of the proportion of

successfully disassembled code. Before obfuscation, IDA Pro is able

to disassemble almost all binary code for both 32-bit and 64-bit

architectures. After obfuscation, the disassembler can only process

51.1% of the 32-bit binary and 14.1% of the 64-bit binary.

As discussed in Section 4.3, it is crucial for an iOS obfuscator

to protect binaries of different architectures equally well. When

interpreting the results in Table 1 and Figure 5, it is important to

note that the two metrics used in the evaluation are complementary.

Since a recognized function must have a body, more falsely recog-

nized functions naturally lead to more disassembled binary chunks.

Considering that IDA Pro reports much more false positives in 32-

bit binary function recognition, a disassembly rate higher than the

result for the 64-bit version is plausible. In other words, despite that

IDA Pro can disassemble more code in the 32-bit binary, the addi-

tionally decoded instructions are incorrectly promoted to functions

that do not exist in the source code, which actually has a negative

effect on further analysis. According to our internal penetration

tests, although the two versions of obfuscated binaries confused

IDA Pro in different ways, the end effects are about the same.

5.2 Overhead

To measure the obfuscation overhead, we implemented the eval-

uated code base as a standalone iOS app by adding necessary ini-

tialization procedures and a minimal GUI. The newly added code

is negligible for the purpose of measurement. We report both the

spatial and temporal overhead caused by obfuscation. As discussed

in Section 4, the protected part of the code is small compared to

apps including it. Since the routines provided by this part are mostly

decoupled from the main functionality of the apps and typically

run in the background, the impact of obfuscation on the overall

execution speed is expected to be modest. In contrast, the bloated

binary size is more of a concern due to the strict size limit on the

code segments of iOS apps.
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Table 1: Performance of IDA Pro Function Recognition

Target Architecture

Number of Functions

Original Obfuscated

Ground Truth IDA Reported False Positives Ground Truth IDA Reported False Positives

ARMv7 (32 bit) 993 1152 159 1069 3516 2447

AArch64 (64 bit) 991 1121 130 1065 1778 713

ARMv7 AArch64

50

100
99.1 98.5

51.1

14.1

C
o
d
e
D
is
as
se
m
b
le
d
b
y
ID
A
P
ro

(%
)

Original Binary

Obfuscated Binary

Figure 5: Effectiveness of disassembly disruption

5.2.1 Size Expansion. Formost of our obfuscated apps, the 64-bit

binaries suffer more from the limited quota of binary size, because

the 32-bit iOS binaries are usually smaller than their 64-bit coun-

terparts. The main reason is that 32-bit binaries are composed of

THUMB2 instructions whose encoding is more compact than that

of 64-bit instructions. Meanwhile, the size limits for the two ar-

chitectures are the same, meaning the obfuscated part by itself is

allowed to consume more quota on the 32-bit platform.

Table 2 shows the code segment sizes of the original and obfus-

cated iOS apps. As can be seen, the obfuscation can cause 3 to 4

times of binary inflation, suggesting that whole-app obfuscation is

likely inapplicable to large-sized iOS apps.

Another observation is that the obfuscation bloats the 64-bit

binary less than the 32-bit version, in terms of proportion. As men-

tioned above, this is a somewhat desirable outcome since the size

problem is more troublesome for 64-bit binaries. We conducted a

preliminary investigation to explore the causes of this phenome-

non. We found one of the reasons is that the 32-bit and 64-bit ARM

backends of LLVM handle relocatable memory addresses differently.

Since ARM is RISC and has a limited instruction length, loading

a large constant integer into a register usually takes more than

one instruction to accomplish. According to our observation, the

32-bit ARM backend of LLVM materializes relocatable memory ad-

dresses by employing constant pools, while the 64-bit backend uses

dedicated instructions like adrp, which are slightly more efficient

than the 32-bit solution in terms of the total bytes of instructions

generated. Since our obfuscator emits a lot of large constants to

Table 2: Binary Size Expansion Due to Obfuscation

Target Architecture
Code Segment Size in Bytes

Original Obfuscated Increase

ARMv7 (32 bit) 286304 1070656 784352 (+307%)

AArch64 (64 bit) 333376 1165456 832080 (+221%)

represent basic block addresses, the difference between the size

efficiency of the two backends is significantly amplified.

5.2.2 Execution Slowdown. We tested the decrease in execu-

tion speed after obfuscation on an Apple iPad Air, an iOS device

released in 2013, which has a 1.4 GHz dual-core ARM CPU and

1GB RAM. The obfuscated code performs both synchronous and

asynchronous tasks inside host apps. The asynchronous tasks are

scheduled sparsely during app execution and we did not detect

any notable slowdown after obfuscation was applied. As for the

synchronous part, the execution penalty is from 5% to 10% for both

32-bit and 64-bit builds,5 while the app-wide slowdown is mostly

negligible. This result indicates that performance degradation is

not necessarily the primary blocker that prevents obfuscation to

be applied to real-world mobile apps.

6 DISCUSSION

6.1 Dilemma of Security and Transparency

In our experience, one of the most challenging factor that prevents

thorough software protection on iOS, and potentially on all plat-

forms featuring centralized software distribution, is the conflict

between seeking more securely obfuscated code and retaining the

transparency to app reviews. Naturally, the more effectively an app

is obfuscated, the more difficult it makes the distributor to review

the functionality of the code, even though the purpose of obfus-

cation is to prevent reverse engineering only from the malicious

parties. Since Apple does not provide official support for iOS app

protection, the developers will have to carefully take the balance

themselves.

An adequate solution to the dilemma is to let the app distribu-

tor perform obfuscation after the review is completed and before

the app is published. Indeed, this solution will shift the burden

of protection from iOS developers to App Store, which may not

be practical in the near future. However, we believe that it could

significantly benefit the entire iOS ecosystem in long terms.

5The precise measurement results are confidential per app developer requirements.
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Although it is unclear whether post-review obfuscation can be

expected by iOS developers at this stage, there are indeed othermore

realistic measures that iOS can take to improve app code security.

For example, some library developers would like their products to

be freely downloaded by any developers who are interested, yet

they also wish to keep the actual content of the code confidential

from potentially malicious clients and competitors. Since iOS app

code generation can now be conducted remotely on Apple’s cloud,

it is technically feasible for iOS to provide encryption facilities for

third-party library code such that only the programming interface

can be seen by other developers while the actual library content is

only revealed to Apple. Although this cannot prevent the code from

being analyzed after apps containing the libraries are released, it is

still a step forward towards more effective iOS software protection.

6.2 Other Protections

Obfuscation is not a panacea for combating the security threats

targeting mobile apps and there have been many deobfuscation

techniques proposed [24, 35, 45, 46]. A comprehensive defense re-

quires a synergy among various countermeasures. At this point,

obfuscation techniques available on iOS are mostly designed for

hindering static analysis, while reverse engineering can also be

conducted dynamically. Given a jailbroken iOS device, reverse en-

gineers can tamper with an app by injecting third-party code into

its process. In this way, adversaries can debug the app at run time

to circumvent certain static protections provided by obfuscation.

Reverse engineering tools like cycript [3] and Frida [4] have made it

quite convenient to perform on-device debugging for arbitrary iOS

apps. There are at least two effective dynamic tampering attacks:

• Sensitive information pry. Depending on the objective of an

attack, it is sometimes sufficient for attackers to place hooks

at critical program points of an app and dynamically monitor

what types of data are being exchanged. As explained in

Section 3, such information leakage is extremely severe for

data-driven defenses like anomaly detection.

• Replay attacks. On jailbroken devices, attackers is capable of

dynamically invoking arbitrary Objective-C methods of an

app after injecting the debugging module at run time, which

allows them to replay certain communications between apps

and servers. It is known that attackers have used replay to

counterfeit users clicks so that they can trick ad providers

into paying them for nothing [25].

Various techniques are available for preventing software from

being dynamically debugged by unauthorized parties. However,

anti-debugging faces a problem similar to obfuscation regarding

its security guarantee. In the case of iOS, since attackers are able

to gain full control over the app and the system altogether, code

integrity can be easily breached. In theory, attackers can rewrite app

binaries and remove all anti-debugging facilities before dynamically

inspecting them.

Although neither obfuscation nor anti-debugging is comprehen-

sive by themselves, there is a chance that they can be combined to

patch the weaknesses of each other. To disable anti-debugging, at-

tackers will have to gain certain knowledge about the defenses

in static means. On the other hand, before removing the anti-

debugging facilities, attackers cannot circumvent obfuscation via

dynamic analysis. Therefore, when obfuscation and anti-debugging

are deployed together, they can form an all round defense against

reverse engineering.

7 RELATED WORK

Software obfuscation has been intensively researched from both

theoretical and practical perspectives. It has been formally proved

that a universally effective obfuscator is not possible to imple-

ment [15, 28]. It is however feasible to build secure obfuscation

constructs with limited generality, such as indistinguishability ob-

fuscation [15] for polynomial-sized circuits [27] and the best possi-

ble obfuscation that tries to minimize rather than eliminate infor-

mation leakage [29].

On the practical side, various obfuscation techniques have been

developed and some of them have been shown helpful to soft-

ware protection. Compared with early inventions like the ones

introduced in Section 4, recently proposed solutions employ more

advanced system and language features for obfuscation purposes.

Popov et al. [38] proposed to replace branches with exceptions and

reroute the control flows with customized exception handlers. Chen

et al. [19] employed the architectural support of Itanium processors

for information flow tracking, i.e., utilizing the deferred exception

tokens embedded in Itanium registers to encode opaque predicates.

Wang et al. [42], Lan et al. [33], and Wang et al. [43] obfuscated

C programs by translating them into declarative languages or ab-

stract computation models, making imperative-oriented analysis

heuristics much less effective. There are also obfuscation methods

that are less dependent on special software and hardware features

but utilize more general techniques like compression, encryption,

and virtualization [30, 34, 39, 48].

Most practically usable obfuscation tools supporting iOS are

commercial. Obfuscator-LLVM [32] is an open source project that

provides the implementation of several well known obfuscation

algorithms within LLVM, thus suitable for iOS app protection. Un-

fortunately, the tool is no longer actively maintained. Tigress [12]

is a source-level obfuscator supporting the C programming lan-

guage. Protections provided by Tigress are mostly heavy weight,

e.g., virtualization-based obfuscation and self modification, some

of which are not applicable to iOS apps.

8 CONCLUSION

In this paper, we shared our experience with applying software

obfuscation to iOS mobile apps in realistic software development

settings. We revealed the threats of various malicious activities

targeting mobile apps, including those conducted by well organized

groups of underground economy practitioners. We then discussed

why iOS app vendors should seriously consider protecting their

apps by software obfuscation and what efforts need to be made for

obfuscation to be practical when applied to complicated apps with

large user bases. In particular, we summarized the major pitfalls that

may prevent iOS developers from utilizing obfuscation effectively

and efficiently, together with our responses to these challenges.

We presented quantitative results on the resilience and cost of our

iOS obfuscator. The evaluation is conducted on a common code

base included by multiple commercial iOS apps serving a large

number of users. The results show that software obfuscation, being

9



an technique accessible to common mobile developers, can indeed

provide reasonably effective protection with modest cost.
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